Area 41 Car Audio

Georgia's Mobile Enhancement Experts

2220 Cobb Pkwy NW, Kennesaw, GA (678) 594-0141
  • Home
  • Services
    • Car Audio
    • Laser and Radar Detectors
    • Motorcycle Audio
    • Vehicle Security
    • Window Tint
  • About Us
  • Location
  • Contact Us
  • Shop
  • Facebook
  • Instagram
  • Twitter
You are here: Home / RESOURCE LIBRARY / Automotive Headlight Upgrades – Part 1: Technologies

Automotive Headlight Upgrades – Part 1: Technologies

Headlight Technologies

If you pay attention, you’ll see cars and trucks on the road with white, yellow, blue and even purple headlight bulbs. Whether chosen for style or performance, hundreds, if not thousands, of options are available to upgrade the lighting on your car, truck or motorcycle. Some replacement bulbs look neat, some are brighter, some have unwanted side effects, and some perform poorly. Let’s kick off this series about automotive headlight technologies and upgrades with some history and a look at the different lighting designs used on vehicles.

Headlight Bulb Styles

If you’ve been around the block a few times, you know there are two basic types of headlight bulbs: sealed beam and composite light assemblies. Sealed-beam bulbs were introduced around 1940, providing automakers with a relatively high-performance, all-glass lighting assembly that included the bulb, reflector and lens in a single non-serviceable unit. The vehicle manufacturer only needed a secure mounting and alignment solution to deliver reliable lighting. Some quick research shows that the 2017 Chevrolet Express van was one of the last newly manufactured vehicles to use sealed-beam headlights.

headlight technologies
An example of a Sylvania H6054 Xtravision sealed-beam headlamp.
headlight technologies
The 2017 Chevrolet Express van is among the last new vehicles produced with sealed-beam headlamps. Image: Adrenalinemotors.ca
headlight technologies
The iconic quad headlights of the second-generation Mercury Capri. Image: Hemmings.com

Around 1983, the first composite headlight assemblies began to be implemented in new cars and trucks. These lighting assemblies use three injection-molded plastic pieces to serve as the body, reflector and lens. These lights are typically molded in shapes that flow with the vehicle’s contours. One instant benefit of these designs was that automobile manufacturers could improve vehicle aerodynamics and allow more leeway in vehicle styling.

headlight technologies
If ever there was a vehicle renowned for having massive headlights, it would be the 1986-93 Volvo 240. Image: 240turbo.com
headlight technologies
The instantly recognizable Subaru WRX “bug-eye” headlights found on 2000 through 2002 Subaru Impreza vehicles. Image: aprperformance.com

Composite light assemblies have replaceable bulbs that fit into a unit that includes a body, a reflector and a lens. When the bulb fails, it is removable from inside the engine compartment, often with minimal difficulty. The cool-for-its-time 1984 Lincoln Mark VII is believed to be the first production vehicle to use composite lighting.

headlight technologies
Most composite headlights have access panels in the engine compartment that allow the bulb to be changed easily. Image: Ifixit.com
headlight technologies
An example of a 9005 halogen headlight bulb from Sylvania.
Headlight Technologies
Credit goes to the 1984 Lincoln Mark VII for being the first production vehicle to use composite headlights. Image: Hemmings.com

The composite headlight evolved to include a dedicated projector assembly within the lighting fixture. There are claims that the projector assembly, which consists of a reflector, lens and often a cutoff shield or shutter, provides more efficient light output than a reflector-style. It’s probable, but the specific performance comes down to the engineer who designed the light.

Headlight Technologies
An example of a projector-style headlight from a late-model Mazda MX-5 Miata. Image: Hooniverse.com
Headlight Technologies
An example of several projector assemblies. These are commonly used in upgrades to reflector-style composite lights. Image: theretrofitsource.com
Headlight Technologies
This 2013 Subaru WRX STI features upgrade OEM-style HID projectors, bulbs and ballasts.

Headlight Technologies

Whether the vehicle has sealed-beam or composite lights, there are dozens of bulb shapes and sizes. Sealed-beam bulbs came in various round and square sizes. Some bulbs had both low- and high-beam filaments in the same assembly. Bulbs for composite lights are similar, though much more compact. These bulbs are also available with single or low/high designs in one assembly.

Headlight Technologies
Some bulbs have dual filaments to provide low- and high-beam solutions from a single package. Image: Sylvania-automotive.com
Headlight Technologies
A small selection of bulb types. There are more than a dozen popular mounting flange and connector options.

Many composite light assemblies have a single bulb with a single light source that handles low- and high-beam conditions. When you want to see farther down the road, you pull back on the light control stalk on the left side of the steering column, activating an electromechanical solenoid in the projector. The solenoid moves the shutter out of the way, allowing all the light from the bulb to illuminate the road.

Headlight Technologies
An example of a headlight projector with a motorized shutter to produce different light patterns for low- and high-beam operation. Image: Rennlist.com user virkdoc

The Evolution of Automotive Headlight Bulbs

Headlights have come a long way from oil lamps burning in large housings on the front of the vehicle in 1880. Though electric lights started becoming popular in homes around this same time, it wasn’t until after 1910 that electric lights on vehicles became popular. These “higher-performance” light sources quickly became a requirement for new vehicles.

Early incandescent headlamp bulb technologies didn’t differ much from the lights some vehicles still come with today. In an incandescent light bulb, a filament made from tungsten is enclosed in an airtight glass chamber. When electricity passes through the filament, it heats up and produces light.

Headlight Technologies
An example of a dual-filament incandescent light bulb for 1935 through 1939 Ford vehicles. Image: speedwaymotors.com

The next evolution was the halogen incandescent light bulb. According to several sources, halogen headlamps were developed in 1961 by a group of European light bulb and headlamp makers. Halogen lamps use the same filament design as a conventional incandescent bulb but have a small amount of a halogen gas like iodine or bromine added to the chamber. Adding these chemicals results in the filament burning brighter and producing a whiter light. It also resulted in a bulb design that lasted significantly longer than its simple incandescent counterparts.

Interestingly, these bulbs weren’t initially permitted in the United States as they were too bright and exceeded the government’s 37,500-candela output limit. In Europe, headlights could have an output of 140,000 candelas per side. The light output limit in the United States was raised to 75,000 per side in 1979. An extremely detailed outline for lighting requirements and limitations can be found in Federal Motor Vehicle Safety Standard (FMVSS) 108. If you ever want to geek out or have a thorough understanding of the laws that govern all vehicle lights, give FMVSS 108 a read.

Headlight Technologies
An example of a 9007-style Sylvania halogen headlight bulb. Image: Sylvania-automotive.com

The next evolution in lighting technology was the high-intensity discharge (HID) bulb. Rather than applying the direct battery voltage to a filament, HID lighting systems have an external ballast module that feeds high-voltage, high-frequency energy to a pair of tungsten electrodes enclosed in a glass chamber. The chamber is filled with a noble gas and a metal or metal salt. Light is produced as the voltage jumps from one electrode to another, like a welder’s arc. This type of light source is often called an arc lamp.

The benefits of HID bulbs include a whiter light than incandescent or halogen bulbs and a more efficient system. Xenon arc lamps are a specific kind of HID system that uses xenon gas in the bulb. Other chemicals like mercury vapor, metal halide and sodium vapor are common in commercial applications such as high-bay lighting, theatre and movie lighting, and film projectors. There are even HID lamps that use radioactive isotopes like thorium and krypton-85 to help make the arc initiation easier. Bulbs for automotive applications do not use these radioactive materials.

Headlight Technologies
An example of a Sylvania D1R HID headlight bulb with an integrated electronic igniter module. Image: Sylvania-automotive.com

A potential drawback of HID lamps is radio frequency interference. The high-output voltage of the ballast that drives the bulb (which can be over 400 volts) combined with a high switching frequency that can exceed 100 kHz can produce harmonic information that can affect both AM and FM radio reception. Many less-expensive aftermarket HID upgrade kits have this interference problem.

Headlight Technologies
An example of an inexpensive aftermarket HID headlight upgrade kit with ballasts and bulbs.

Light emitting diode (LED) headlights are another newer technology that has provided several options to vehicle manufacturers. LEDs are solid-state semiconductors that emit light photons as electrons flow through the device. Early LEDs were expensive, costing hundreds of dollars per lumen of light output. Improvements and advancements in materials, production quantity and design have evolved so that LEDs now cost hundredths of a cent per lumen.

An important benefit of LED lighting technology is that it’s quite efficient. These lights are also incredibly compact and last tens of thousands of hours. LED lights reach their maximum output level almost instantly, whereas halogen bulbs take a part of a second, and HID bulbs can take several seconds. This instant illumination makes LEDs ideal for turn signals and brake lights where every millisecond matters in an emergency. Studies have shown that LEDs can save more than a tenth of a second in warning other drivers. When moving at 65 miles per hour, one-tenth of a second represents a distance of 9.53 feet. That’s significant. The compact size of LEDs allows automakers to get creative with styling, as the space needed to produce adequate light output on the road is minimal.

While LEDs are efficient, they are small and remain sensitive to heat. You will note that LED lighting assemblies include large heatsinks to ensure that the individual LED chips don’t overheat.

Headlight Technologies
Many cities and towns have switched to LED street lighting, which consumes significantly less power. Image: gecurrent.com
Headlight Technologies
A fan-cooled aluminum heatsink designed for a 100-watt, 8,000-lumen LED chip.

A drawback of aftermarket LED bulbs is that they haven’t historically been able to place the light source in the same location as an incandescent or HID bulb because of the need for the heatsink. This limitation can reduce the effective light output of the assembly because the reflector or projector optics might not be optimized properly. The only way to know if an aftermarket LED bulb will work in your vehicle is to test it before purchasing.

Headlight Technologies
An example of a LED headlight from a 2023 Hyundai G70 sedan. Image: motor1.com
Headlight Technologies
An ATOM LED replacement headlight bulb from Lumens rated accurately at 3,000 lumens of light output.

It’s worth noting that the little orange or yellow LED chip you see on each side of an aftermarket LED bulb is an array of multiple LED elements. These are called chip on board LEDs, or more commonly, an LED COB. A single COB includes dozens of individual LEDs mounted on a thermally efficient substrate and covered by a phosphor coating designed to produce a specific light color.

Headlight Technologies
An example of an LED COB that includes many LED elements in a single housing.

The latest technology in automotive lighting is lasers. Companies like Audi, BMW and Mercedes-Benz offer laser-equipped high beams on several vehicles. These lights use a solid-state laser diode to shoot an intense blue light at a yellow phosphor. The phosphor is similar to the yellow rectangles you see in LED lights. Reflectors and lenses can then direct the output of this light source to illuminate the road.

The benefit of laser light solutions is that they are even more compact and energy-efficient than LEDs. Production vehicles first implemented laser headlights in 2014. Laser high beams can illuminate up to 600 meters in front of a car or SUV. Because of the intensity of the laser light sources, active light control technologies help ensure that oncoming drivers aren’t blinded.

Headlight Technologies
With four times the light output of LED bulbs, laser headlights manufactured by OSRAM are ideal for high-beam applications.
Headlight Technologies
The utterly bonkers all-electric Audi S1 Hoonitron features laser lights to ensure maximum visibility at insane speeds.

Light Brightness and Other Lies

Just as with incredibly overstated amplifier and speaker power ratings, the aftermarket lighting industry has fallen prey to completely bogus light output claims. I can tell you with the utmost confidence that a single 9005 LED bulb with two chips will not produce 22,000 lumens of light output.

To understand the math behind the above statement, a state-of-the-art LED COB can produce about 400 lumens of light with 1.6 amps of current. LED intensity is controlled by how much current flows through the device. So, to produce 22,000 lumens of light, the bulb would need to draw 88 amps of current.

The specifications provided with these so-called 22,000-lumen LED bulbs note that they use 80 watts. At 12 volts, that’s 6.67 amps of current. A more appropriate light output claim would be about 1,670 lumens if they used the highest-performing LED COBs available. Oh, one last note: Many aftermarket LED bulb manufacturers quote the light output from the pair of bulbs. So, the “bogus factor” can be divided in half and still be impossible. As always, buyer beware, and don’t believe everything you read.

Last and certainly not least, upgrading your headlight bulbs is not a free-for-all. As with audio system upgrades, enthusiasts often think they know more than the engineers who designed the factory-installed systems. Longevity, legal compliance and thermal management are key considerations when designing a lighting system. We’ve seen many examples of high-output aftermarket headlight bulbs melting reflectors and lenses. We suggest the “better solutions” approach rather than the “brute force” approach to improving forward lighting.

Headlight Technologies
A reflector assembly inside a first-generation Hyundai Genesis sedan melted because 55-watt bulbs were used instead of 35-watt units.

Up next in this series, we’ll examine aspects of lighting like lumens, candelas, lux, watts, color and temperature.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Share this:

  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on X (Opens in new window) X
  • Click to share on Pinterest (Opens in new window) Pinterest

Related

Filed Under: Lighting, PRODUCTS, RESOURCE LIBRARY

About BestCarAudio.com

BestCarAudio.com is a showcase for the very best mobile electronics retailers in the world and a place to educate and inform interested consumers about existing and emerging technologies.

Recent Articles

Compustar 2WG17 Remote Kit

Product Spotlight: Compustar 2WG17 Remote Kit

May 19, 2025 

Compustar was one of the first brands to allow consumers to choose a remote control package to accompany their remote start controller. Previously, we looked at flagship-level … [Read More...]

Car headlights

Automotive Headlight Upgrades – Part 1: Technologies

May 18, 2025 

If you pay attention, you’ll see cars and trucks on the road with white, yellow, blue and even purple headlight bulbs. Whether chosen for style or performance, hundreds, if not … [Read More...]

An amplifier with arrows pointing outwards towards four speakers

How Is the Power from My Amp Divided Between My Subwoofers?

May 11, 2025 

We see a lot of questions like “My car audio amp can produce 800 watts; how much power does each of my subs get?” If you aren’t versed in the calculation basics of Ohm’s law, the … [Read More...]

Girl with speakers on each side of her head holding her hands over her ears and looking distressed

My Car Stereo System Sounds Worse After a Speaker Upgrade. Why?

May 4, 2025 

Before about 2000, upgrading a factory-installed car audio system was pretty easy. You could start with a new set of speakers and a subwoofer and have something quite enjoyable. In … [Read More...]

Compustar EZGO II

Product Spotlight: Compustar EZGO-II

April 28, 2025 

Hands-free proximity unlocking is a feature found on many new cars and trucks fresh off the showroom floor. The Compustar EZGO-II adds this convenience to your remote car starter … [Read More...]

Subscribe!

Enter your email address to subscribe to our website and receive notifications of new posts by email.

Testimonials

Best Experience!

I went into Area 41 today to upgrade my subs and the salesman spent a long time with me and didn't rush me I really appreciate that I was able to listen to different systems in different cars. I was able to get a whole system that is a lot better than just getting the subs I came in to ask about thank you

I Love This Place!

I love this place! Very knowledgeable staff and they installed one 12 that sounds like 2 for cheap. They also took the time to make sure that the car looks like it does before the installation so you can't even tell anything was touched. If you want awesome car audio come here!

Awesome Staff

Awesome staff and very precise with details. Long wait but they have a comfortable atmosphere and make you feel at home so the wait wasn't bad at all. Will be taking my other car for them next week. I highly recommend them!

Subscribe to Our Website

Enter your email address to subscribe to our website and receive notifications of new posts by email.


Get Directions to Area 41 Car Audio

Area 41 Car Audio

2220 Cobb Pkwy NW
Kennesaw, GA 30152
Phone: (678) 594-0141

Connect With Us

  • Facebook
  • Instagram
  • Twitter

Services

  • Car Audio
  • Laser and Radar Detectors
  • Motorcycle Audio
  • Vehicle Security
  • Window Tint

Store Hours

SundayClosed
MondayClosed
Tuesday10:00 AM - 6:00 PM
Wednesday10:00 AM - 6:00 PM
Thursday10:00 AM - 6:00 PM
Friday10:00 AM - 6:00 PM
Saturday10:00 AM - 4:00 PM

Copyright © 2025 Area 41 Car Audio · Privacy Policy · Website by 1sixty8 media, inc. · Log in

 

Loading Comments...